Bài toán xác định một đa thức (cực hay)

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Thu Hằng (trang riêng)
Ngày gửi: 21h:58' 05-06-2009
Dung lượng: 61.5 KB
Số lượt tải: 193
Nguồn:
Người gửi: Nguyễn Thị Thu Hằng (trang riêng)
Ngày gửi: 21h:58' 05-06-2009
Dung lượng: 61.5 KB
Số lượt tải: 193
Số lượt thích:
0 người
Bài toán xác định một Đa Thức
Việc tìm tòi lời giảI bài toán xác định một đa thức thường gây lúng túng cho HS . Nguyên nhân chính là hs được trang bị đầy đủ các kiến thức cần thiêt nhưng rời rạc ởcác khối lớp và thường thiếu bài tập áp dụng . Bài viết này nhằm củng cố kiến thức về đa thức về đa thức trong chương trình toán từ lớp 7 đến lớp 9 đặc biêt chương trình HSG lớp 8
1, Một vài kiến thức cơ bản để giảI loại toán này :
Định lý Bơ-du : phần dư của phép chia đa thức f(x) cho nhị thưc x – a bằng giá trị của đa thức tại x = a , tức là f(x) = (x –a)g(x) + f(a)
Thực vậy , giả sử f(x) = (x –a)g(x) + r thì f(a) = r
Phương Pháp hệ số bất định
Giả sử f(x) = a3x3 + a2x2 + a1x + a0
g(x) = b3x3 + b2x2 + b1x + b0
Nếu f(x) = g(x) với ít nhất 4 giá trị phân biệt của x thì a3=b3 , a2=b2 , a1=b1 , a0=b0 .
Chứng minh : giả sử với 4 giá trị phân biệt x1 , x2 , x3 , x4 có :
f(x1)=g(x1) (1) f(x2)=g(x2) (2)
f(x3)=g(x3) (3) f(x4)=g(x4) (4)
Đặt c3=a3 – b3 , c2=a2 – b2 , c1=a1 – b1 , c0=a0 – b0 .
Trừ theo vế của (1) và (2) được :
C3(x31 – x32 ) + C2(x12 – x22) + C1(x1 – x2) = 0
Vì x1 – x2 0 nên
C3(x13 +x1x3+x32) + C2(x1 + x2) + C1 = 0 (5)
Tương tự từ (1) và (3) có
C3(x12 + x1x3 + x32 ) + c2(x1+x3)+c1 = 0 (6)
Trừ theo tong vế của (5) và (6) rồi chia cho x2 – x3 0 được c2+c3(x1+x2+x3)=0 (7)
Tương tự từ (1) , (2) , (4) có :
C2+c3(x1 + x2 + x4) = 0 (8)
Trừ theo từng vế của (7) và (8) được c3(x3 – x4) = 0 c3=0 vì x3 – x4 0 . Thay c3 =0 vào (8) được c2 = 0 . Từ đó và (6) được c1 =0 . Thay vào (1) được a0 = b0 suy ra đpcm .
2. Một số dạng toán thường gặp
Dạng 1 : Xác định đa thức bậc n ( n = 2,3) khi biết (n + 1) giá trị của đa thức
Bài toán 1 : Xác định đa thức bậc ba biết f(0) =1 ; f(1) = 0 ; f(2) = 5;f(3)= 22
Lời giải : Gọi đa thức cần tìm là :
F(x) = ax3 + b2 + cx + d
Theo bài ra ta có : f(0) = 1 d=1
f(1) = 0a+b+c = -1 (1)
f(2) = 54a+2b+c=2 (2)
f(3) = 229a + 3b +c =7 (3)
Giải hệ phương trình (1) , (2) , (3) được a=1, b=0, c=-2 . Vậy f(x)=x3-2x+1
Chú ý rằng để xác định đa thức bậc n thì cần biết n+1 giá trị đa thức , còn nếu chỉ biết n giá trị thì
Việc tìm tòi lời giảI bài toán xác định một đa thức thường gây lúng túng cho HS . Nguyên nhân chính là hs được trang bị đầy đủ các kiến thức cần thiêt nhưng rời rạc ởcác khối lớp và thường thiếu bài tập áp dụng . Bài viết này nhằm củng cố kiến thức về đa thức về đa thức trong chương trình toán từ lớp 7 đến lớp 9 đặc biêt chương trình HSG lớp 8
1, Một vài kiến thức cơ bản để giảI loại toán này :
Định lý Bơ-du : phần dư của phép chia đa thức f(x) cho nhị thưc x – a bằng giá trị của đa thức tại x = a , tức là f(x) = (x –a)g(x) + f(a)
Thực vậy , giả sử f(x) = (x –a)g(x) + r thì f(a) = r
Phương Pháp hệ số bất định
Giả sử f(x) = a3x3 + a2x2 + a1x + a0
g(x) = b3x3 + b2x2 + b1x + b0
Nếu f(x) = g(x) với ít nhất 4 giá trị phân biệt của x thì a3=b3 , a2=b2 , a1=b1 , a0=b0 .
Chứng minh : giả sử với 4 giá trị phân biệt x1 , x2 , x3 , x4 có :
f(x1)=g(x1) (1) f(x2)=g(x2) (2)
f(x3)=g(x3) (3) f(x4)=g(x4) (4)
Đặt c3=a3 – b3 , c2=a2 – b2 , c1=a1 – b1 , c0=a0 – b0 .
Trừ theo vế của (1) và (2) được :
C3(x31 – x32 ) + C2(x12 – x22) + C1(x1 – x2) = 0
Vì x1 – x2 0 nên
C3(x13 +x1x3+x32) + C2(x1 + x2) + C1 = 0 (5)
Tương tự từ (1) và (3) có
C3(x12 + x1x3 + x32 ) + c2(x1+x3)+c1 = 0 (6)
Trừ theo tong vế của (5) và (6) rồi chia cho x2 – x3 0 được c2+c3(x1+x2+x3)=0 (7)
Tương tự từ (1) , (2) , (4) có :
C2+c3(x1 + x2 + x4) = 0 (8)
Trừ theo từng vế của (7) và (8) được c3(x3 – x4) = 0 c3=0 vì x3 – x4 0 . Thay c3 =0 vào (8) được c2 = 0 . Từ đó và (6) được c1 =0 . Thay vào (1) được a0 = b0 suy ra đpcm .
2. Một số dạng toán thường gặp
Dạng 1 : Xác định đa thức bậc n ( n = 2,3) khi biết (n + 1) giá trị của đa thức
Bài toán 1 : Xác định đa thức bậc ba biết f(0) =1 ; f(1) = 0 ; f(2) = 5;f(3)= 22
Lời giải : Gọi đa thức cần tìm là :
F(x) = ax3 + b2 + cx + d
Theo bài ra ta có : f(0) = 1 d=1
f(1) = 0a+b+c = -1 (1)
f(2) = 54a+2b+c=2 (2)
f(3) = 229a + 3b +c =7 (3)
Giải hệ phương trình (1) , (2) , (3) được a=1, b=0, c=-2 . Vậy f(x)=x3-2x+1
Chú ý rằng để xác định đa thức bậc n thì cần biết n+1 giá trị đa thức , còn nếu chỉ biết n giá trị thì
 
Truyện cười
Chào mừng quý vị đến với Website Phòng GD&ĐT Huyện Hương Sơn Hà Tinh.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.






